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†2023年度修了（自然環境科学プログラム）

1. はじめに

太陽質量（M☉）の100万倍から10億超倍（106 M☉～109 

M☉超）の質量を持つ超大質量ブラックホール（Super-
Massive Black Hole：SMBH）は，マゼラン星雲のような
矮小銀河を除くほぼすべての銀河の中心に存在し，クェー
サー（Quasi Stellar Object：Quasar/QSO）やセイファー
ト銀河（Seyfert）やライナー（Low-Ionization Nuclear 
Emission-line Region: LINER）などの活動銀河核（Active 
Galactic Nucleus: AGN）の輝きは，SMBHの周りの降着
円盤に周辺のガスが質量降着して重力エネルギーが解放さ
れ，熱核融合の0.7%に比べて圧倒的に高い10%もの高効率
で電磁波やジェットのエネルギーに変換されるためである
ことが明らかになった（Lynden-Bell 1969）。しかし，近
傍宇宙でみられる星形成銀河（Star Forming Galaxy: 
SFG） とAGNの 活 動 性 の 違 い， 初 期 宇 宙 で の 銀 河 や
SMBHの形成過程，銀河とSMBHの共進化（Magorrian et 
al. 1998）などについては未解明な部分が多い（谷口 
2014）。

特に，銀河の進化の観点からは，2つの大きな未解決問
題がクローズアップされている（谷口 他 2012）。

1つ目は「死んだクェーサー問題」である。最も明るい
部類のAGNであるクェーサーは，宇宙誕生後20億年～30
億年（赤方偏移z=2〜3）の遠方宇宙には多く存在するが，
100億年以上経った近傍宇宙（z < 0.1）にはほとんど無い
ことが分かっている（Fan et al. 2001）。10億太陽質量（109 
M☉）を超えるSMBHは100億年程度では消滅しないので

（Hawking 1975），クェーサーが近傍宇宙に無いことは不
思議なことである。クェーサーの典型的な光度（単位時間
当たりのエネルギー）は1045erg/s〜1049erg/sであるた
め，対数光度は45〜49，絶対等級は-23.7〜-33.7となる。銀
河の個数密度と赤方偏移zの明るさ別の変化（Ueda et al. 
2003，Ikeda et al. 2012, Hasinger et al. 2005）で，クェー

サーはz=2〜3でピークとなり，現在に近づくにつれて減
少して近傍宇宙にはほぼ存在しないことがわかる（図1）。

2つ目は「ダウンサイジング」である（Kriek et al. 2007, 
Ueda et al. 2003, Hasinger et al. 2005, Ikeda et al. 2011, 
Ikeda et al. 2012）。銀河の進化の過程では，小さい銀河が
合体して大きな銀河に成長すると考えるのが自然である
が，観測によると，明るい（=大きい）銀河の個数密度の
ピークは宇宙初期で，暗い（=小さい）銀河ほど現在に近
づくことが分かっている（図1）。すなわち，「大きな銀河
ほど先に形成された」ということになり，銀河の進化に大
きな矛盾が出てくる。

 

銀河のマクロ的な進化は，観測値との対応により光度進
化（Pure Luminosity Evolution: PLE）と密度進化（Pure 
Density Evolution: PDE）により説明されている。赤方偏移
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図 1  銀河の個数密度と赤方偏移 z の絶対等級毎の変化
（Ikeda et al. 2012 Fig.9：紫外線～赤外線）
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が減少するにつれて明るいAGNの個数密度が減っていく現
象を，光度進化では「AGNの光度が落ちていく」と考え，
密度進化では「AGNの数が減っていく」と考える。実際に
は，光度進化と密度進化は並行して起きているとされてい
る。一方，銀河の進化を引き起こすメカニズムには，下記
の要因（A）と要因（B）が考えられる（谷口 2004）。

要因（A）　「SFGが合体してAGNに変化」
メジャー・マージャー：巨大な渦巻銀河どうしの衝突
により，星間ガスがぶつかり激しいウルトラ・スター
バーストを誘起，大量に生まれた大質量星がガスを温
めて，強い赤外線を放射する超高光度赤外線銀河
ULIRG（Ultra Luminous Infrared Galaxy）が形成さ
れ，超新星爆発によるガスの放散によりクェーサー級
の高輝度AGNが出現
マイナー・マージャー：渦巻銀河と衛星銀河の衝突に
より，衛星銀河の中心核はガスとともに渦巻銀河の中
心核に落下して, 高密度ガスの領域でスターバースト
を誘起，ブラックホールへの質量降着が起きてセイ
ファート銀河クラスの中輝度AGNを形成。

要因（B）　「AGNの活動性が減少」
ガスの枯渇：AGNを光らせているのは銀河中心部の
ガスのSMBH（降着円盤）への質量降着で，2 M☉/年
程度。中心部のガスは数万～数億M☉程度（谷口 他 
2012）であるため，数万〜数億年程度でガスは枯渇
ADAF：移流優勢流（Advection-Dominated Accretion 
Flow: ADAF）が形成されると，重力エネルギーの解
放で発生した熱は放射で失われることなくSMBHに運
ばれるため，放射光度は低下（Ichimaru 1977）

本研究では，SFGとAGNの様々な赤方偏移の宇宙での
分布の概略傾向をつかむことにより，上記要因（A）（B）

のメカニズムのどちらが支配的であるかを調査し，「死ん
だクェーサー問題」と「ダウンサイジング」という銀河の
進化に絡む未解決問題について解釈することを目的とす
る。なお，本論文では表現が煩雑になることを避けるため
に，SFGを「星を作っている銀河，あるいは活動性を示さ
ない銀河」，AGNを「活動銀河核，あるいは活動銀河核を
中心に持つ母銀河」とした。

本研究を通じ，密度パラメータとしてΩm（バリオン＋
ダークマター）=0.3，ΩΛ（ダークエネルギー）=0.7，ハッ
ブル定数H0=70kms-1Mpc-1とした（二間瀬敏史 2002）。

2. 方法

2.1 SFGとAGNの放射光の特徴
活動性の観点から銀河の特徴をまとめると，AGNは高

温の降着円盤から強い電磁波を放出して活動性を示す銀河
であり，SFGはAGNのような活動性を示さない銀河とい
うことができる。SFGとAGNの放射光の特徴を，連続光，
水素原子の再結合線，イオンの高階電離輝線ごとに表1に
整理した。

AGNでは，降着円盤の周囲には高速（高温）・高密度の
ガスプラズマから成る0.1pc程度の広さの広輝線領域

（Broad Line Region: BLR）が形成され，高速で移動する
ガスによるドップラー効果によりFWHMで5,000kms-1

（500kms-1～104kms-1） と い う 幅 の 広 い 広 輝 線（Broad 
Line: BL）を放出する。降着円盤から100pc～1Kpc程度離
れたところには低速（低温）・低密度のガスプラズマから
成る狭輝線領域（Narrow Line Region: NLR）が形成さ
れ，FWHMで400kms-1（200kms-1～900kms-1）と狭い狭輝
線（Narrow Line: NL）を放出する。AGNの1型はAGNを
フェイス方向から観測した場合でBLRが見えるため，BL
とNLの両方の輝線が現れる。2型はエッジ方向から観測し

BLR：Broad Line Region（広輝線領域：幅広の再結合線と半禁制線]を放射） NLR：Narrow Line Region（狭輝線領域：幅狭の再結合
線と半禁制線]と[禁制線]を放射） 高階電離輝線の詳細：CIV1549, CIII]1909, SiIV+OIV]（SiIV394, 1403, OIV]1402），MgII2798, [OIII]5008, 
[NII]6585, [SII]6718, [OI]6302

表 1  SFG と AGN（1 型 , 2 型）が放射する連続光 , 水素原子の再結合線 , イオンの高階電離輝線の特徴
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InfraRed Exploration: KECK-MOSFIRE）があるため，各
2つのデータベースを分析した。

2021年末に打ち上げられたジェームズ・ウェッブ宇宙望
遠鏡（James Webb Space Telescope: JWST）は，高赤方
偏移の宇宙を中心に探査している。本研究では, JWSTの
観測データによる2つの新しい論文を分析した。

4. 結果

4.1 BPT図での境界設定とKartaltepe et al. 2015の
     分析（Subaru-FMOS）

BPT図におけるSFGとAGNの識別境界設定法には，固定
境界法（Brinchmann et al. 2004）と可変境界法（Kewley 
et al. 2013a）があるが，SFGとAGNの個数密度の赤方偏
移依存性を把握するという本研究には両法とも大差ないた
め，計算処理が容易な固定境界法を選んだ。また，分離式
の係数には，Brinchmann et al. 2004のFigure 1.に示され
ている2本の境界線に合致する値とした。その結果, SFGと
CMP（Composite）の境界線は，

となり，CMPとAGNの境界線は，

となった。
Kartaltepe et al. 2015 Table 2について，各z範囲につい

てBPT図を作成して，SFGとAGNの個数を求めた（図2）。

　0.8＜z≦1.0　　　　1.0＜z≦1.2　　　　1.2＜z≦1.4
 　

 
　　　　　1.4＜z≦1.6　　　 　1.6＜z≦1.8 

図2から求めたSFGとAGNの個数を個数密度に変換する
ために，各z範囲の最小zと最大zに対応する共動距離

（Comoving Radial Distance: CRD）を半径とする球殻の
体積を求め，サーベイ面積（COSMOSは2deg2）の全球面

た場合でBLRはダストトーラスに隠されて見えないた
め，輝線にはNLだけが現れる。クェーサーではほとんど
が1型で2型は0.1%程度と非常に少ないが，セイファート
銀河では1型が30%に対して2型は70%と逆転する（谷口　
2004）。これは，クェーサーでは強い放射がトーラスを破
壊する，あるいは高光度のAGNではトーラスが幾何学的
に薄いため，クェーサーではBLRからのBLが隠されない
ためと考えられている（ピーターソン 2010）。一方，SFG
では降着円盤が働かないためガスは低速・低温で，放出さ
れる輝線は主として水素の狭輝線だけである。 

2.2 BPT図によるSFGとAGNの分類と赤方偏移依存性
このような輝線の特徴を利用してSFGとAGNを分類する

手法には，Lyα輝線の幅の違い（SFG：FWHM≦1,000kms-1, 
AGN：FWHM>1,000kms-1）を利用する方法（Zhang et al. 
2021）や，高赤方偏移宇宙のクェーサーが生じるライマ
ン・ブレークをtwo-color diagramにより検出する方法

（Ikeda et al. 2011, Ikeda et al. 2012）や，可視光輝線診断
図のBPT図（Baldwin et al. 1981）を用いる方法などがあ
る。本研究では，SFGとAGNを分離できる上にAGNをセ
イファート銀河，ライナーに分離することができるBPT
図を用いることにした。

BPT図は，AGNはSFGより高階電離輝線のフラックス
（単位面積・単位時間あたりのエネルギー）が大きいこと
を利用する方法で，それぞれの銀河の禁制線である高階電
離輝線と水素のバルマー輝線フラックスの比を2次元図に
プロットし，境界線によって分けられる領域によりSFGと
AGNに分離する。縦軸に電離度の高い禁制線[OIII]5008とH
β線のフラックス比，横軸に電離度の低い禁制線[NII]6585
とHα線のフラックス比をとる図がよく用いられる。

銀河の進化の様子を把握するため，0<z<6.5（現在～宇
宙誕生後10億年）の幅広い赤方偏移の宇宙において，SFG
とAGNの個数密度の赤方偏移依存性を調査した。

3. サンプル

赤方偏移が0.5を超えるとバルマー輝線が近赤外線領域
に偏移してしまうので，BPT図をHα〜Hβ領域で作成す
るためには，近赤外線での分光観測が必要になる。赤方偏
移が大きいため銀河の見かけの明るさが暗くなることに加
え，近赤外線は可視光よりも検出器の感度が低いので精密
な観測が難しい。

地上からの観測では，多くの光を集められる8m〜10m
クラスの大口径望遠鏡が必要になる。また，同時にでき
るだけ多数の天体を分光するために，光ファイバーなど
を用いた多天体分光による広視野観測が望ましい。この
ような条件を満たす望遠鏡/装置には，すばる望遠鏡の
ファイバー多天体分光器（Subaru Fiber Multi-Object 
Spectrograph: Subaru-FMOS）や，ケック望遠鏡の多天
体赤外線分光器（KECK Multi-Object Spectrograph For 

図 2　5 つの z 範囲における BPT 図
青：SFG, 赤：AGN（Kartaltepe et al. 2015 Table 2）
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S/N≧5ではSFGは1.2＜z≦1.4，1.4＜z≦1.6，1.6＜z≦1.8
の3領域に分布し，AGNは1.6＜z≦1.8の領域にのみ分布し
た。AGNはSFGより高z領域に存在する傾向は，他のS/N
でも同様であったが，S/Nが向上してデータの信頼性が高
まるとより顕著になった。これらのことから，1.2＜z≦1.8
の宇宙において，AGNはSFGより高z領域に分布すると考
えられる。

4.3 MOSFIRE-KBSSの分析（KECK-MOSFIRE）
Steidel et al. 2014のTable 1に記載されたzが2.0＜z≦2.6

の天体251の中で，[OIII]5008，[NII]6585，Hα，Hβの4輝線
が測定できている天体168個について，0.2刻みの3つのz範
囲（2.0＜z≦2.2，2.2＜z≦2.4，2.4＜z≦2.6）に分けてBPT
図を作成し，それぞれについてSFGとAGNを分類した

（図6）。個数密度のz依存性を図7に示す（サーベイ面積は
0.13deg2）。

     

　2.0＜z≦2.2　　　　2.2＜z≦2.4　　　　2.4＜z≦2.6

 

図7よ り，SFGは2.0＜z≦2.2，2.2＜z≦2.4，2.4＜z≦2.6
の各z範囲に大差なく分布するが，AGNは高zに向かうに
つれて個数密度が増えることが分かった。分布のピーク
は，SFGは2.2＜z≦2.4であるのに対し，AGNは2.4＜z≦2.6
以上であった。すなわち，2.0＜z≦2.6の宇宙において，
SFGは低z領域に分布し，AGNは高z領域に分布すること
が分かった。

4.4 MOSFIRE-MOSDEFの分析（KECK-MOSFIRE）
本カタログには，[OII]3727〜[SII]6733の16輝線について，

INTERCEPT（erg s-1 cm-2）〜PREFERREDFLUX_ERR

積（41253deg2）との比率を乗じてサーベイ体積を求め
た。結果を図3に示す。SFGは低zに，AGNが高zに分布す
る傾向を示した。

 　　

　

4.2 FMOS-COSMOS-CATALOG-2019の分析
    （Subaru-FMOS）

本カタログには，4輝線のFLUX（erg s-1 cm-2）と共に
FLUX_ERR（erg s-1 cm-2）が記入されていたため，S/N

（FLUX/FLUX_ERR）の違いによるSFGとAGNの分布の
傾向を把握するために，S/N≧3，S/N≧5，S/N≧10の3種
類について分析した。ここでは，S/N≧5について，各z範
囲のBPT図（図4）と，個数密度のz依存性（図5）を示す

（サーベイ面積は1.7deg2）。
   

　1.2＜z≦1.4　　　　1.4＜z≦1.6　 　    1.6＜z≦1.8

図 3　SFG と AGN の個数密度の z 依存性
（Kartaltepe et al. 2015 の Table 2）

図 4　S/N ≧ 5 における 3 つの z 範囲での BPT 図
（FMOS-COSMOS-CATALOG-2019）

図 5　S/N ≧ 5 における SFG と AGN の個数密度の z 依存性
（FMOS-COSMOS-CATALOG-2019）

図 6　3 つの z 範囲での BPT 図（MOSFIRE-KBSS）

図7　SFGとAGNの個数密度のz依存性（MOSFIRE-KBSS）
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S/N≧15では，SFGは1.2＜z≦1.4，1.4＜z≦1.6，1.6＜z≦1.8，
2.2＜z≦2.4の4領域に分布し，AGNは2.4＜z≦2.6の領域に
のみ分布した。すなわち，AGNはSFGより高z領域に存在
する傾向を保有すると考えられる。一方，S/N≧3とS/N
≧5の低S/Nでは分布の傾向は認められていないが，これ
は，ノイズの混入が影響していると考えられる。上記よ
り，1.2＜z≦2.6の宇宙において，AGNはSFGより高z領域
に分布すると考えられる。

4.5 JWST/NIRSpecによる高z領域の測定論文の分析
Sanders et al. 2023のFigure 3. には，z=2.0-9.3の164個の

天体について様々な輝線の輝度比によるBPT図が掲載され
ている。本研究では，[NII]6585BPT図（縦軸[OIII]5008/Hβ-
横軸 [NII]6585/Hα）と，[SII] 6718BPT図（縦軸[OIII]5008/H
β-横軸[SII]6718/Hα）に着目し，様々なz範囲におけるSFG
とAGNのz依存性を分析した。

[NII] 6585BPT図，[SII]6718BPT図とも，z範囲2.7≦z＜4.0
では，2.0≦z＜2.7からzが増加したことでSFGが右上に移
動し，SFG/AGN境界に更に近づいた。更にz範囲が増加
して4.0≦z＜5.0や5.0≦z＜6.5になると，右上方向への移動
傾向は曖昧になり，むしろ上方向に移動したように見え
る。これは，銀河が遠方に存在することからS/Nの良い
[OIII]5008は測定できているが，[NII]6585や[SII] 6718の輝度
が測定限界に近づいているためと思われる。いずれにして
も，zが増加するとAGN領域に分布する銀河の割合が増
え，またSFG/AGN境界線から離れた位置に存在するよう
になっている。SFGとAGNのz依存性は，定性的ではある
が図10のようになる。すなわち，低zではSFG>AGNであ
り，高zではSFG<AGNの傾向を有することになる。

 

4.6 JWST/MIRIによる高z領域の測定論文の分析
Yang et al. 2023では，おおぐま座とうしかい座の間に

あるExtended Groth Strip: EGS領域をJWSTのMIRIによ
り観測し，結果をCIGALEによるSEDフィッティング/モ
デリングを用いて分析することにより，銀河をSFG（本論
文ではSFと記述），mixed，AGNに分類している。

Yang et al. 2023のFigure 3.から各z範囲及びSFGとAGN
の個数を読み取って，サーベイ面積（9 arcmin2）から求
めたサーベイ体積により，SFGとAGNの個数密度を算出
し，z依存性を図11に整理した。

図11からSFGとAGNの個数密度のzに対する傾向を見る
と，SFGは低zではAGNより多くzの増加とともに減少す

（erg s-1 cm-2）の22種類の情報が記入されていた。S/N
（FLUX/FLUX_ERR）の違いによるSFGとAGNの分布の
傾向を把握するために，BPT図による分析に必要な
[OIII]5008，[NII]6585，Hα，Hβの4輝線についてFLUX（erg 
s-1 cm-2）とFLUX_ERR（erg s-1 cm-2）の比を求め，S/N
≧3，S/N≧5, S/N≧10，S/N≧15の4種類のS/Nについて
分析した。ここでは，S/N≧10について，各z範囲のBPT
図（図8）と，個数密度のz依存性（図9）を示す（サーベ
イ面積は0.13deg2）。

　1.2＜z≦1.4　　　　1.4＜z≦1.6　 　    1.6＜z≦1.8
   

　　　　　1.8＜z≦2.0　   　    2.0＜z≦2.2
   

　　　　　2.2＜z≦2.4　  　     2.4＜z≦2.6

  

S/N≧10で は，SFGは1.2＜z≦1.4，1.4＜z≦1.6，1.6＜z
≦1.8，2.0＜z≦2.2，2.2＜z≦2.4の5領域に分布し，AGNは2.2
＜z≦2.4及び2.4＜z≦2.6の2領域にのみ分布した。また，

図 8　S/N ≧ 10 における 7 つの z 範囲での BPT 図
（MOSFIRE-MOSDEF）

図 9　S/N ≧ 10 における SFG と AGN の個数密度の z 依存性
（MOSFIRE-MOSDEF）

図 10 Sanders et al. 2023 の Figure 3 の [NII] 6585BPT 図や
[SII] 6718BPT 図から得られるSFGとAGNの定性的なz 依存性
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フを図13に示す。図13では，銀河の光度は宇宙年齢の増
加とともに単調減少していて，16億歳～138億歳での光度
減少の平均時定数τmは式3より，τm～15億年となった。
ビッグバン後のある時点で銀河が一斉に生まれたとした場
合，138億年後の現在において様々な赤方偏移zで観測され
る銀河はすべて誕生からの経過時間は同じであるが，電磁
波の伝搬速度が有限であるためにzが大きいほど宇宙初期
での姿を現すことになる。すなわち，

傾向（3）　「生まれたばかりの銀河は明るく，時間の経
過とともに暗くなっていく」
という光度進化の傾向を示している。

 

また，図13は2つの傾きの異なる減衰直線から構成され
ていて，宇宙年齢が16億歳～28億歳の「減衰の大きい期
間（τ1=9億年）」，及び44億歳～現在の「減衰の小さい期
間（τ2=17億年）」に分けることができる。AGNがSFGに
変化してSFGが増えると，メジャー・マージャーやマイ
ナー・マージャーにより銀河どうしの合体が起こり，要因

（A）が一定の割合を占めるようになる。「減衰の大きい期
間」も「減衰の小さい期間」も銀河の光度が単調減少して
いることから要因（A）より要因（B）の方が優勢である
が，「減衰の大きい期間」は要因（A）が少ないためτが
小さく，「減衰の小さい期間」になるとSFGが増加して要
因（A）増えてくるためにτが大きくなると考えることが
できる。

傾向（1）と傾向（3）を同時に満たし，初期宇宙で要因
（A）によりSFGからクェーサーが形成される過程や，
AGNの活動性が減少する過程，近傍宇宙でSFGからセイ
ファート銀河などのAGNが再形成される過程を加える
と，図14のモデルになる。このモデルについて，縦軸を個
数密度，横軸をzで模式的にグラフ化すると図15のように
なる。

5.1 ①AGN急増期（要因（A）>>要因（B））
図15の①AGN急増期は，宇宙が誕生（z=∞，0歳）して

から最初にSMBHや巨大クェーサーが形成される（z=7，

るのに対し，AGNはzに関わらず概ね一定でz～3を超える
とAGNがSFGより多くなる傾向が読み取れる。すなわ
ち，低zではSFGが多く，高zになるとAGNが多くなると
いう結果が得られた。

 

　
5. 考察

SUBARU-FMOS, KECK-MOSFIRE, JWSTによるSFGと
AGNの個数密度のz依存性から，サーベイ全体の傾向を抽
出すると図12となる。

図12から，下記の密度進化の傾向を読み取れる。
傾向（1）　「SFGは低zに，AGNは高zに分布（z<6.5）」
傾向（2）　「SFGとAGNの個数密度は，z=1〜3で逆転」

最初に述べたように，銀河の光度進化と密度進化を引き起
こすメカニズムには，

要因（A）　「SFGが合体してAGNに変化」　
要因（B）　「AGNの活動性が減少」

があると考えられている。要因（B）のメカニズムには，
ガスの枯渇，ADAFなどが考えられるが，本研究ではガ
スの枯渇に着目して，ガスの質量降着の速度とAGNの光
度の関係について，簡単な計算で確認した。　　

銀河中心付近に存在する質量Mのガスが，SMBHの重力
により降着円盤に質量降着して，そのエネルギーを電磁波

（光度LQ）として放出するとした場合，質量降着の時定数
をτ，質量の電磁波への変換効率をη（0.1程度），光速を
c，時間をtとすると，Aを定数として，

となる。Kartaltepe et al. 2015のFigure 1からzに対する光
度の中央値を読み，横軸をzから宇宙年齢に変換したグラ

図 11　Yang et al. 2023 の Figure 3. から読み取った
SFG, AGN の個数密度の z 依存性

図 12　SUBARU-FMOS, KECK-MOSFIRE, JWST による
SFG と AGN の個数密度の z 依存性（サーベイ全体の傾向）

図 13　銀河の IR 光度と宇宙年齢
式 3 に従って質量降着の時定数τを導出
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間に対応）。降着円盤はガス粒子どうしの摩擦により熱せ
られ，数十万Kもの高温になるため，円盤中央部から強力
なX線や紫外線が放射される。円盤の外側では温度は数千
Kまで下がるため，可視光が放出される。また，電波銀河
と呼ばれる銀河からは，電子と陽電子のペア・プラズマの
流れである電波ジェットが噴出する。このようにして，母
銀河中心部のガスは電磁波のエネルギーに置き換わるとと
もに，SMBHに飲み込まれてその質量を増加させることで
消失していく。時間の経過とともにガスが消失していく
と，式3に従って質量降着率（dM/dt）と光度LQが小さく
なり，AGNの活動性が低下していくと考えられる。

傾 向（2）「SFGとAGNの 個 数 密 度 はz=1〜3で 逆 転 」
は，図15のz〜2の頃にSFGが増えたことで生じる。同様
に，図1では暗い銀河が増えたz〜2の頃に相当する。

宇宙誕生後8億年）までの初期宇宙である。この時期は， 
1000M☉程度の大質量星が誕生しやすく，大質量星は星団
を形成してより個数密度の高い場所で連鎖的に合体を繰り
返す「暴走合体」が起きる。「暴走合体」により超大質量
星ができ，これらは短期間の内に超新星爆発を起こして
100M☉程 度 の 中 質 量 ブ ラ ッ ク ホ ー ル（Intermediate 
MassBlack Hole：IMBH）を残す。IMBHを種にしてガス
降着と銀河の合体でどのように質量を増やせるかを調べた
シミュレーションによると，宇宙年齢9億歳の頃までに
109M☉のSMBHができ，母銀河の質量は1012M☉（銀河系
と同程度）となることが確認されている（Li et al. 2007）。

5.2 ②AGN急減期（要因（A）<<要因（B））
②AGN急減期は，①AGN急増期で形成されたAGNが活

動性を失っていく時期と想定した（図15の減衰の大きい期

図 14　SFG とクェーサー・セイファート銀河・ライナーの変化

図 15　AGN の密度進化と光度進化のメカニズム
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合体による銀河の進化と矛盾するように感じられるが，
「クェーサーが形成された後，ガス降着率が低下すること
により暗くなっていき，暗いAGNの個数が増加する際に
明るいAGNの個数が減少してそれぞれがピークを持つ」
と考えると説明できる（図15）。明るい銀河ほど個数密度
が小さいのは，明るいほどサーベイ体積が大きく換算され
るためである。図1と，図15の②AGN急減期（～③AGN
漸減期）が良く似ていることも，注目に値する。

6. まとめ

銀河の中心領域から強い電磁波を放射して活動性を示す
AGN（活動銀河核）と，そのような活動性を示さない
SFG（星形成銀河）を，固定境界法を用いたBPT図により
分類したところ，SFGは低zに，AGNは高zに分布し，
SFGとAGNの個数密度はz=1〜3で逆転するという結果が
得られた。また，銀河の光度は宇宙年齢の増加と共に単調
減少し，生まれたばかりの銀河は明るかったが，時間の経
過と共に暗くなっていくことがわかった。

上記より，初期宇宙でSFGが合体してクェーサーを形
成，その後中心付近のガスが減って活動性が弱まってSFG
に変化し，近傍の宇宙では再びSFGが合体してAGNを形
成するというモデルを提案した。このモデルを用いると，

「死んだクェーサー問題」や「ダウンサイジング」を説明
できた。
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つれてガスはさらに中心部に落ち込んでいき，ウルトラ・
スターバーストを起こし，形成された若い大質量星からは
強い紫外線や可視光が放射される。エネルギーを吸収して
温まったダストからは強い赤外線が再放射され，外部から
赤外線光度の異常に強い銀河として観察される。この状態
がULIRGと解釈されている。一方，若い大質量星は，ど
んどん超新星爆発を起こして死んでいく（超新星バース
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われ，X線・紫外線・可視光で明るく光る中心核が見えて
くる。これがクェーサーなどのAGNとして説明されてい
る（カリテクモデル：Sanders et al. 1988）。また，渦巻銀
河と衛星銀河の衝突で，セイファート銀河も形成される

（谷口 他 2012）。
AGNの再形成の時定数をτxとすると，式4と図13のτ1 = 

9億年，τ2 = 17億年を用いて，τx = -19億年となる。τx は
SFGがAGNに変化するタイムラグであり，得られた19億
年は，NASA Hubble Mission Team，2012の銀河合体の
時間（約30億年）とオーダーは一致した。

5.4 死んだクェーサー問題とダウンサイジングへの
      示唆

クェーサーのエネルギー源であるSMBHは，現在の宇宙
年齢である138億歳程度では死なないのに，クェーサーが
近傍宇宙には見当たらないのは，「クェーサーの中に
SMBHは今でも存在するが，銀河中心部のガスが欠乏して
降着現象が収まったことで普通銀河（SFG）として観測さ
れているため」と理解することができる。

図1に示したように，光度の大きな（絶対等級の小さな）
銀河ほど個数密度のピークは高z（初期宇宙）にあるため，
明るい大きな銀河ほど先に形成されたように見え，それは
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